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SUMMARY
This paper considers applications where a human agent is navigating a semi-autonomous mobile
robot in an environment with obstacles. The human input to the robot can be based on a desired
navigation objective, which may not be known to the robot. Additionally, the semi-autonomous
robot can be programmed to ensure obstacle avoidance as it navigates the environment. A shared
control architecture can be used to appropriately fuse the human and the autonomy inputs to
obtain a net control input that drives the robot. In this paper, an adaptive, near-continuous control
allocation function is included in the shared controller, which continuously varies the control effort
exerted by the human and the autonomy based on the position of the robot relative to obstacles.
The developed control allocation function facilitates the human to freely navigate the robot when
away from obstacles, and it causes the autonomy control input to progressively dominate as the
robot approaches obstacles. A harmonic potential field-based non-linear sliding mode controller
is developed to obtain the autonomy control input for obstacle avoidance. In addition, a robust
feed-forward term is included in the autonomy control input to maintain stability in the presence of
adverse human inputs, which can be critical in applications such as to prevent collision or roll-over
of smart wheelchairs due to erroneous human inputs. Lyapunov-based stability analysis is presented
to guarantee finite-time stability of the developed shared controller, i.e., the autonomy guarantees
obstacle avoidance as the human navigates the robot. Experimental results are provided to validate
the performance of the developed shared controller.

KEYWORDS: Shared control; Robust control; Obstacle avoidance; Harmonic potential field;
Adjustable autonomy.

1. Introduction
The integration of human intelligence, modern information technology, and robotics in human–
robot interaction has been an active research area for decades. One of the goals is to fuse the
expert knowledge of humans with the computational advantage of robots in well-learned situations
to improve the performance of co-robotic systems. From the control perspective, the challenge
is in fusing human inputs with autonomous commands to affect the behavior of the robot while
guaranteeing safety and stability of the system. The early work by Sheridan (cf. ref. [1,2]) introduced
supervisory control, where a human supervisor would direct and monitor activities of an autonomous
process. The separation between human intervention and autonomous execution in supervisory control
is overcome with shared control that enables both the autonomy and the human to participate in
process- or task-level execution. Shared control uses the strengths of the robot and the human to
overcome each other’s weaknesses by combining a pre-determined or time-varying level of autonomy
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464 Obstacle avoidance control of human-in-the-loop mobile robot systems

with the human input. Applications of shared control include medical and biomedical systems,3–5

teleoperation,6–9 assistive robotics,10–16 and brain-machine interface.17

To this end, shared control can be divided into two categories: task-level shared control and servo-
or execution-level shared control. Similar to supervisory control, in task-level shared control, human
issues broad commands to a robot to perform general tasks. The robot carries out commanded tasks
until a trigger is raised (e.g., encountered an obstacle), when the control switches to the robot.
Discussions of the task-level shared control can be found in refs. [7, 18–22].

In execution-level shared control, the commanded control input to a robot is obtained by
appropriately fusing the human and the autonomy control inputs. The robot continually integrates
its own assessment of the environment with the influence human exerts on the system. The amount
of human influence on the robot depends on the designed control allocation weights, which can be
fixed or adaptive. Fixed control allocation is used when prior knowledge of the quality of human and
robot control inputs is known. For example, in dual-user haptic training system for medical surgery,
the control allocation can be chosen according to the expertise of the trainee and the trainer.4, 23–27 In
contrast to fixed control allocation, adaptive control allocation dynamically allocates control authority
to the human and the autonomy. The control allocation can be based on human performance,14, 15, 28

duration of interaction,29 safety of the system,30 agreement between the human and the robot,16 or
the state of the robot in the environment.

Execution-level shared control has been successfully demonstrated in various applications.
However, most of the existing results lack rigorous stability and robustness guarantees of the overall
human–robot systems. Disparate and occasionally conflicting control objectives between the human
and the robot pose great challenges in the design and analysis of shared control systems. For example,
smart wheelchairs must be designed to counteract dangerous maneuvers and prevent collisions
and falls that may result from the lapse in judgment or conflicting requests from an unsuspecting
operator.15, 30 Likewise, in applications such as assistive robotics10–13 and surgical robotics,4 system
instability may put human life in danger. Therefore, from the control theory perspective, stability
analysis of shared control systems is essential to ensure performance within safety limits. Few
results (e.g., refs. [16, 31, 32]) provided rigorous mathematical analysis to guarantee the stability
of shared control systems in their applications. In ref. [31], Ren and Beard considered the stability
of shared control systems using control Lyapunov functions (CLFs). Wang and Liu16 developed
an adaptive shared controller and provided stability analysis for an assistive robot to track the
time-varying human inputs and avoid obstacles. For a similar problem, Jiang et al.33, 34 presented
a shared controller with fixed control allocation and provided Lyapunov-based stability analysis.
Recently, model predictive control and fuzzy logic control has been used for obstacle avoidance
in shared control applications;35–37 however, many of these approaches lack rigorous stability
guarantees.

This paper considers execution-level shared control of a mobile robot using adaptive control
allocation for applications where a human agent is navigating a semi-autonomous mobile robot in
an environment with obstacles. The human agent has a desired navigation objective, e.g., a person
on a smart wheelchair may want to go to a certain aisle in a shop; the objective may not be known
to the robot. Based on an objective, the human applies control input to the robot. Further, the semi-
autonomous robot can be programmed for obstacle avoidance, where the robot may detect obstacles
using on-board sensors. The autonomous obstacle avoidance behavior provides autonomy control
input that is necessary for avoiding collision with obstacles. A shared control structure allows the
human to achieve his or her navigation objective while the autonomy steers the robot away from
any obstacles. The presented work primarily focuses on two problems. First, how to appropriately
fuse the human and the autonomy control inputs that conserves their individual control objectives.
Second, how to design the autonomy control input for obstacle avoidance that also takes into account
human inputs. To fuse the human and the autonomy control inputs, a near-continuous state-dependent
control allocation function is developed that adaptively weighs the two control inputs based on
the position of the robot relative to obstacles. In addition, the control allocation function ensures
relatively smooth transition of control authority between the human and the autonomy. As opposed
to traded or switched control in refs. [8, 18, 19, 22, 32, 38], where interaction between the robot and
the operator exhibits a switching behavior, the presented adaptive shared controller reflects both the
human and the autonomy inputs. Further, the collision avoidance objective is achieved by developing
a sliding mode controller using harmonic potential fields to obtain the autonomy control input. The
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Obstacle avoidance control of human-in-the-loop mobile robot systems 465

obstacles are modeled using harmonic potential fields. The positive charge in the potential field is
located at the center of the obstacle, and the location of the negative charge is chosen to reduce the
deviation of the robot from its human-intended trajectory for improved user interaction. In contrast
to refs. [16, 39], the presented controller includes a feed-forward robust element to compensate for
adversarial human inputs, which is crucial to safety in assistive robotics (e.g., to prevent collision
or roll-over of smart wheelchairs due to erroneous human inputs). Due to robustness to adverse
human actions, the robot does not have to halt when human inputs contradict the collision avoidance
objective, as in ref. [16], rather the autonomy ensures the robot reaches a safe state-space without
interruption. The satisficing approach in ref. [31] requires that CLFs be obtained for each obstacle
space to determine stabilizing and destabilizing control input sets for obstacle avoidance. However,
finding CLFs can be a challenge. As opposed to ref. [31], the presented work employs a sliding mode
controller to track a desired gradient of the potential field to avoid collision. Moreover, the stability of
the closed-loop human–robot system in the presence of assistive as well as adversarial human control
inputs guarantees finite-time stability, i.e., the robot will avoid obstacles in finite time to reach a safe
state-space. The contributions of the paper can be summarized as follows: (a) a novel execution-level
shared controller using a near-continuous adaptive control allocation function is developed to assist
a human operator to navigate a mobile robot safely, i.e., without collision, in an environment with
obstacles, (b) the sliding mode control structure includes feed-forward element to robustify against
adverse human inputs, (c) Lyapunov-based stability analysis is provided in the presence of assistive
and adversarial human inputs, and (d) the controller guarantees that the obstacle avoidance objective
is achieved in finite time.

2. Problem Formulation
Consider the problem where a wheeled mobile robot (WMR) is navigating in a complex environment
with obstacles. The motion of the WMR is governed by the following kinematics:

⎡
⎣ ẋ

ẏ

θ̇

⎤
⎦ =

⎡
⎣ cos θ 0

sin θ 0
0 1

⎤
⎦ [

υ

ω

]
(1)

where [x(t) y(t)]T = p(t) ∈ R
2, θ(t) ∈ R denote the position and orientation, respectively, of the

WMR, and υ ∈ R
+ is the forward linear velocity. The angular velocity ω(t) ∈ R assumes the shared

control structure as

ω = ksua + (1 − ks)uh (2)

where ua(t) ∈ R, uh(t) ∈ R are the autonomy and the human control inputs, respectively, and the
function ks(p) determines the allocation of control authority between the autonomy and the human,
such that 0 ≤ ks ≤ 1. The human control input uh(t) is assumed to be bounded such that |uh(t)| ≤ Uh,
for Uh ∈ R

+.
The time-varying input uh(t) can be directly supplied by the human (e.g., using a joystick or

keyboard). Alternately, uh(t) can be designed to achieve a human-specified positioning objective
for the robot. For example, uh(t) can be designed to track the time-varying position of a human in
scenarios where the robot is to follow the human,16 or uh(t) can be obtained for the robot to follow
a human-encoded desired trajectory.32 Further, the obstacle avoidance controller on-board a WMR
provides ua(t) to the robot based on the information gathered from the environment. Appropriate
fusion of uh(t) and ua(t) in Eq. (2) is crucial to the performance and safety of the system.

Given the system in Eqs. (1) and (2) and the human input uh(t), the goal is to determine ua(t) and
the control allocation weight ks(p) that guarantees obstacle avoidance.

3. Obstacle Avoidance Controller Development
The control objective is to design the autonomy control input ua(t) that will guarantee that the
semi-autonomous robot safely avoids obstacles as the human navigates the robot through a complex
environment. In adaptive shared control, careful attention must be given when the autonomy and
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466 Obstacle avoidance control of human-in-the-loop mobile robot systems

human inputs conflict. Due to environmental or physio-psychological factors, the human control
input may deviate from a desirable action set to be deemed adversarial to the goal of obstacle
avoidance. Such situations can be dangerous, and therefore the movement of the robot is stopped in
ref. [16]. In contrast to ref. [16], in this paper, a robust control approach is taken to manage conflicting
human inputs without the need to stop the robot. The properties of the presented obstacle avoidance
controller are given below.

Property 1. The controller must guarantee obstacle avoidance with no assistance from the human,
i.e., uh = 0, when the robot is close to the obstacles.

Property 2. The controller must guarantee obstacle avoidance in the presence of adverse human
inputs when the robot is close to the obstacles.

Property 3. The obstacle avoidance controller must be stable in the sense of Lyapunov.

Property 1 states that the autonomy can generate sufficient control effort to safely avoid obstacles
in the absence of human inputs. Property 2 states that the obstacle avoidance controller can detect the
presence of adversarial human inputs and maintains robustness against them. It is to be noted that
the human action is called adversarial only when the robot is sufficiently close to the obstacles, and
the selected human action may result in collision. The formal stability definition in Property 3 enables
to derive necessary conditions for stability of the closed-loop system.

The subsequent sections are devoted to development and analysis of obstacle avoidance controller
based on the control objective defined above and to satisfy Properties 1–3. A harmonic potential field-
based obstacle avoidance controller is developed in Section 3.1. Section 3.2 analyzes the stability of
the controller and provides a bound on the convergence time. Section 3.3 outlines an approach to
select goal point for the robot as it approaches the obstacles. The case of multiple obstacles is studied
in Section 3.4 by considering different obstacle geometries.

3.1. Control architecture
A harmonic potential field, also known as Coulomb potential, exhibits well-defined equilibrium points
as against artificial potential fields that may contain local maxima or minima. Inspired by the work
in ref. [40], harmonic potential fields are developed to create feasible non-holonomic trajectories to
guarantee obstacle avoidance. Consider the WMR configuration space contains n obstacles, and let(
xj , yj

)
be the center of the obstacle j = {1, 2, . . . , n}. In this paper, the obstacles are considered to be

circular for simplicity; however, other complex shapes can be accommodated through diffeomorphic
mappings.40, 41 These shapes can include overlapping obstacles and other obstacle structures. Let(
xg, yg

)
be the position of the goal point. Given the goal point and the obstacles, the harmonic

potential field φj (t) for each obstacle can be designed as (see Fig. 1)

φj = qg ln

(
1

dg

)
+ qj ln

(
1

dj

)
(3)

d2
g = (

x − xg

)2 + (
y − yg

)2

d2
j = (

x − xj

)2 + (
y − yj

)2

where dg(t) ∈ R
+ is the distance of the robot from the goal point, dj (t) ∈ R

+ is the distance of the
robot from the obstacle j , qg ∈ R

− denotes a unit negative charge at the goal point, qj ∈ R
+ is the

electric charge at the obstacle j of magnitude

qj = roj

roj + Dj

(4)

where roj ∈ R
+ is the radius of the obstacle j , and Dj ∈ R

+ denotes the distance from the obstacle
j to the goal point.
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Fig. 1. Harmonic potential field φj (t) obtained using a negative charge at the goal point and a positive charge at
the obstacle.

Based on Eq. (3), the desired orientation θd (t) of the robot can be obtained as the negative gradient
of the potential field φj (t) with respect to p(t) as

θd (t) = arctan 2

(
−∂φj

∂y
, −∂φj

∂x

)
(5)

In Eq. (5), the mapping arctan 2 (·) : R
2 → R denotes the four quadrant inverse tangent function and

θd (t) ∈ (−π, π]. Based on the definition of the harmonic potential field in Eq. (3), if the angular
trajectories θ(t) in Eq. (1) track θd (t) in Eq. (5), then collision with the obstacles can be avoided.

To design the obstacle avoidance controller, let θ̃d (t) be the difference between the current
orientation θ(t) and the desired orientation θd (t) as

θ̃ � θ − θd (6)

Taking the time derivative of Eq. (6) and substituting Eqs. (1) and (2), the open-loop error system can
be obtained as

˙̃θ = ksua + (1 − ks)uh − θ̇d (7)

In Eq. (7), the time derivative θ̇d (t) of the continuous function in Eq. (5) is bounded, i.e., θ̇d (t) ∈
L∞. The expression for θ̇d can be obtained by taking the derivative of Eq. (5) along the trajectories
of the dynamical system in Eq. (1) as

θ̇d = ∇pθdṗ (8)

where ∇pθd ∈ R
1×2 is defined as

∇pθd �
[
∂θd

∂x

∂θd

∂y

]
Consider the obstacle geometry as shown in Fig. 2. The configuration space of the WMR is divided

into safe set Ms , danger set Md , and hysteresis set Mh defined as

Ms �
{
(x, y) | rhj ≤ dj ∀j = 1, . . . , n

}
(9)

Md �
{
(x, y) | roj ≤ dj ≤ rdj ∀j = 1, . . . , n

}
(10)

Mh �
{
(x, y) | rdj ≤ dj < rhj ∀j = 1, . . . , n

}
(11)
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g(ε)
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ks1

ks2

ks1

Fig. 2. Schematic diagram showing the control allocation weights ks1 and ks2 as a function of the state of the
robot and the obstacle geometry, where Ms indicates the safe set, Mh is the hysteresis set, and Md represents
the danger set.

where rdj , rhj ∈ R
+ are as shown in Fig. 2. Mh acts as a buffer preventing the robot from hunting,

i.e., repeated entering and exiting Md , at the boundary between Mh and Md . The radius rdj > roj

must be selected to be sufficiently large to ensure that a robot traveling at maximum linear speed can
avoid collision with an obstacle given the limit on its angular velocity. It is relatively straightforward
to obtain an expression for minimum rdj using the bounds on the robot’s velocities and the control
allocation weights shown in Fig. 2. The radius rhj is selected to be greater than rdj to obtain a
non-empty hysteresis set, so that any noise in the measurement of dj (t) or erroneous human inputs
will not result in hunting. In practice, rhj can be selected by trial and error to ensure satisfactory
performance of the system. In addition, since the controller development assumes the robot to be a
point mass, the radius (or maximum dimension) of the robot should be added to roj , rdj , and rhj .

Based on the open-loop error system in Eq. (7), the autonomy input can be designed as

ua = −
(

ka1 sgn(θ̃)
∣∣θ̃ ∣∣α − θ̇d

ks

+ ka2

ks

| sgn (uh) + sgn (θ̃ )|| sgn (uh)| sgn (θ̃ )

)
(12)

where ka1, ka2 ∈ R
+ are control gains, α ∈ R

+ is a constant, and θ̇d (t) can be obtained using Eq. (8).
The robust terminal sliding mode controller ua(t) in Eq. (12) is designed for the robot to track the
desired potential gradient θd (t) to avoid obstacles. The first term in ua(t) is designed to regulate the
tracking error θ̃(t) to origin. It should be noted that the first term in Eq. (12) is continuous in time. The
last term in Eq. (12) maintains robustness against adverse human actions. In Eq. (12), adverse human
actions are identified by comparing the direction of the human input, | sgn (uh)| = 1 for counter-
clockwise angular velocity, | sgn (uh)| = −1 for clockwise angular velocity, and | sgn (uh)| = 0 for
uh = 0, with the sign of the angular error | sgn (θ̃ )|, where the angles measured counter-clockwise
are positive. It can be seen from Eqs. (2) and (12) that if the control gain ka2 is selected sufficiently
large, then adverse human actions will always be dominated to avoid obstacles. The condition on
gain ka2 is derived in Section 3.1. Given the design of the last term in Eq. (12), the control input
ua(t) is continuous when no human input is applied or when the direction of human input is the
same as that of the autonomy. Alternatively, ua(t) is discontinuous only when human exerts an input
that is adversarial to the goal of obstacle avoidance. Chattering of the θ(t) trajectory around origin
is only possible when the human exerts persistent adversarial input with high frequency. However,
such scenarios can be deemed unpractical, and therefore the controller in Eq. (12) will not exhibit
chattering.
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Clearly, from Properties 1 and 2, the autonomy control input is warranted only when the robot is in
the vicinity of obstacles, i.e., for p(t) ∈ Md and when the robot enters the hysteresis Mh from Md .
In p(t) ∈ Ms and when the robot travels from Ms to Mh, the autonomy control input ua(t) = 0.
Therefore, the control allocation function ks(p) ∈ R in Eqs. (2) and (12) can be defined as

ks �

⎧⎪⎨
⎪⎩

0 if p(t) ∈ Ms

ks0 if p(t) ∈ Mh

ks1 if p(t) ∈ Md

(13)

The function ks0(p) in Eq. (13) is defined based on the trajectory of the robot coming into the region
Mh from Md or Ms as

ks0 �
{

ks2 if robot enters Mh from Md

0 if robot enters Mh from Ms

(14)

ks1(p), ks2(p) ∈ R in Eqs. (13) and (14), respectively, are defined as the following continuous
functions:

ks1 � tanh

(
β

rdj − dj

rdj − roj

+ ε

)
(15)

ks2 � tanh (ε) tanh

(
γ

rhj − dj

rhj − rdj

)
(16)

where the constants β, γ > 0, and ε ∈ R
+ is a small constant. For sufficiently large β and γ ,

ks1 ∈ [tanh (ε), 1) and ks2 ∈ [ε1, tanh (ε)), where ε1 > 0 since the definition of hysteresis set in
Eq. (11) excludes the boundary set of radius rhj . The constant ε ensures positive control gain when
the robot enters Md , and maintains continuous transition of the gain ks as the robot leaves Md to
enter Mh. In practice, ε can be small but it should provide acceptable performance in Mh against
hunting. It can be seen from Eqs. (13)–(16) that ks(p) ∈ [0, 1) assumes small values when the robot is
away from the obstacles thus providing more control authority to the human, and the control authority
slides to autonomy as the robot approaches obstacles. Specifically, the human agent assumes complete
control when the robot is in the safe set. The functions ks1(p), ks2(p) enable continuous allocation
of the control authority between the human and autonomy (see Fig. 2) when p(t) ∈ Md,Mh. In
addition, using Eqs. (15) and (16), ks2 ≈ ks1 when dj = rdj . In other words, when the robot is leaving
an obstacle, the allocation function ks(p) is almost continuous at the border of Md and Mh. The
discontinuity in ks(p) only exists at the border of Md and Mh when kp goes from 0 to tanh (ε) as the
robot approaches an obstacle, and at the border of Mh and Ms when kp goes from ε1 to 0 as the robot
leaves Mh after traveling in Md . This near-continuous control allocation may help in faster learning
and improving the user experience. The constants β and γ in Eqs. (15) and (16), respectively, can
be designed to obtain the desired rate of change in the control authority, i.e., how fast the autonomy
gains control over human and vice versa.

Substituting Eq. (12) in Eq. (7), the closed-loop error system can be obtained as

˙̃θ = − ks

(
ka1 sgn(θ̃ )

∣∣θ̃ ∣∣α − θ̇d

ks

+ ka2

ks

| sgn (uh) + sgn (θ̃)|| sgn (uh)| sgn (θ̃ )

)

+ (1 − ks)uh − θ̇d . (17)

The closed-loop error system in Eq. (17) expresses the dynamics of the tracking error θ̃ (t) when
the autonomy control input ua(t) is applied. Therefore, it is crucial to examine the stability of Eq. (17)
to determine whether the developed controller can avoid obstacles. The following section provides
rigorous stability analysis using Lyapunov theory.
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3.2. Convergence analysis

Lemma 1. Given the system in Eqs. (1) and (2), for any human control input uh(t), the autonomy
controller ua(t) in Eq. (12) tracks the orientation of the robot along the desired trajectory, i.e.,
θ(t) → θd (t). [Property 3]

Proof. The stability of the controller in Eq. (12) is analyzed for the cases when uh(t) is assistive,
uh(t) is adversarial, and uh(t) = 0 when p(t) ∈ Md or the robot enters Mh from Md .

Consider a Lyapunov candidate function V (t) ∈ R
+ as

V � 1

2
θ̃2 (18)

where θ̃ (t) is defined in Eq. (6). Taking the time derivative of V (t) along the system trajectory in
Eq. (1) and substituting Eq. (17), the Lyapunov derivative can be obtained as

V̇ = −kska1θ̃ sgn(θ̃)
∣∣θ̃ ∣∣α + (1 − ks)θ̃uh − ka2| sgn (uh) + sgn (θ̃ )|| sgn (uh)|θ̃ sgn (θ̃ ) (19)

Consider the case when the human input uh(t) is assisting autonomy to track θd (t), i.e., when
sgn (uh) = − sgn (θ̃). The Lyapunov derivative in Eq. (19) can be written as

V̇ = −kska1θ̃ sgn(θ̃ )
∣∣θ̃ ∣∣α − (1 − ks)|uh|θ̃ sgn (θ̃ ) (20)

where uh = |uh| sgn (uh) along with sgn (uh) = − sgn (θ̃ ) is used. After substituting θ̃ =∣∣θ̃ ∣∣α∣∣θ̃ ∣∣1−α
sgn (θ̃ ) and simplifying, the Lyapunov derivative can be obtained as

V̇ = −∣∣θ̃ ∣∣α(
kska1

∣∣θ̃ ∣∣ + (1 − ks)|uh|
∣∣θ̃ ∣∣1−α

)
(21)

From Eqs. (11), (15), and (16), ks(p) > 0. In Eq. (21), it can be seen that the bracketed quantity is
a positive definite function of θ̃ (t). Therefore, the Lyapunov derivative is negative definite, V̇ < 0.
Based on V > 0 and V̇ < 0, it can be concluded that θ̃(t) ∈ L2. From the facts that θ̇d (t) ∈ L∞ and
ks(p) 
= 0, the control input in Eq. (12) is bounded, ua(t) ∈ L∞. In addition, the constant α in Eq. (12)
can be chosen to satisfy 0 < α < 1. Then, the closed-loop system in Eq. (17) is finite-time-stable.42

Specifically, the developed obstacle avoidance controller working in collaboration with the human
agent can guarantee that the tracking error θ̃ (t) goes to zero in finite time.

Now consider the case when the human control input uh(t) is adverse to the goal of obstacle
avoidance, i.e., sgn (uh) = sgn (θ̃). The Lyapunov derivative in Eq. (19) can be written as

V̇ ≤ −kska1θ̃ sgn(θ̃ )
∣∣θ̃ ∣∣α − 2ka2θ̃ sgn (θ̃ ) + Uhθ̃ sgn θ̃ (22)

where |uh(t)| ≤ Uh is used. To dominate adverse human inputs, the robust gain ka2 in Eq. (12) can be
designed as

ka2 >
Uh

2
(23)

Based on Eqs. (22) and (23), for K ∈ R
+, the Lyapunov derivative can be written as

V̇ ≤ −∣∣θ̃ ∣∣α(
kska1θ̃ sgn(θ̃ ) + K

∣∣θ̃ ∣∣1−α
)

(24)

The bracketed term in Eq. (24) is positive definite. For 0 < α < 1, the closed-loop system in Eq. (17)
is finite-time-stable, and it can be shown that ua(t) ∈ L∞. Specifically, the controller guarantees
finite-time tracking of θd (t) and robustness against adverse human inputs provided that the robust
gain in Eq. (12) is chosen according to Eq. (23).
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In the absence of human input, i.e., uh = 0, the Lyapunov derivative in Eq. (19) becomes

V̇ = −kska1

∣∣θ̃ ∣∣α+1
(25)

From Eq. (25), it is clear that V̇ > 0, and for any 0 < α < 1, the closed-loop system in Eq. (17) is
finite-time-stable.

�

Lemma 1 proves that a WMR with shared angular velocity ω(t) tracks the desired trajectory
θd (t). However, for collision avoidance, the robot must track the gradient of the potential field, i.e.,
θ̃ (t) → 0, before reaching the obstacle boundary. For a robot moving with constant linear velocity, it
is necessary to establish a lower bound on the angular velocity to guarantee collision avoidance.

Theorem 1. The stabilizing shared controller ω(t), and the obstacle geometry, roj and rdj , there
exists a lower bound on the autonomy control input ua(t) in Eq. (12) that guarantees collision
avoidance.

Proof. The Lyapunov derivative in Eq. (21) can be written as

V̇ = −kska1

∣∣θ̃ ∣∣α+1 − (1 − ks)|uh|
∣∣θ̃ ∣∣ ≤ −kska1

∣∣θ̃ ∣∣α+1
(26)

An inequality identical to Eq. (26) can be obtained using Eqs. (24) and (25) when the human input
is adversarial and uh = 0, respectively. From the solution of the differential equation in Eq. (26), the
upper bound on the convergence time for θ(t) → θd (t) can be obtained as

t ≤
∣∣θ̃o

∣∣2

2ζ+1(1 − ζ )ka1 tanh (ε)
(27)

where θ̃o ∈ R is the initial tracking error and ζ = (α + 1)/2. In Eq. (27), the minimum value of
ks = tanh(ε) is used. For the goal point generation approach in Section 3.3, it can be shown that the
initial error

∣∣θ̃o

∣∣ ≤ π/2. Let tc ∈ R
+ be the minimum time to reach any obstacle from the boundary of

Md , and ῡ ∈ R be the maximum linear velocity of the robot. Hence, we have tc = minj (rdj − roj )/ῡ.
The sufficient condition to avoid collision is t < tc, i.e., the robot must track the desired gradient curve
before reaching obstacle. Based on the inequality t < tc, the lower bound on ua(t) can be obtained
by selecting the control gain as

ka1 >
ῡ
∣∣θ̃o

∣∣2

2ζ+1(1 − ζ ) tanh (ε)(rdj − roj )
∀j (28)

Theorem 1 and Lemma 1 prove that the shared control input (2) along with Eqs. (23) and (28)
guarantee obstacle avoidance in the presence of no human inputs [Property 1] and adversarial inputs
[Property 2]. �

It is known that the harmonic potential field has an unstable equilibrium point apart from the
two singular points, i.e., the source and the sink. The unstable equilibrium point lies on the obstacle
along the singular line joining the obstacle center and the goal point as shown in Fig. 3. The unstable
equilibrium point can only be reached by traveling along the singular line. However, the curvature of
the gradient lines along the singular line approaches infinity, θ̇d (t) → ∞, at the equilibrium point, and
therefore θd (t) cannot be tracked with finite control resources. In addition, since the equilibrium point
is on the obstacle, collision avoidance cannot be guaranteed in this case. To prevent the robot from
traveling along the singular line, a small perturbation can be added to the angular velocity ω(t). The
perturbation causes deviation in the robot’s position from the singular line, enabling the robot track
the gradient with finite control effort. In practice, the noise in the position and velocity measurements
can be sufficient to avoid this situation.
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Fig. 3. Harmonic potential field showing the stable goal point and the unstable equilibrium point.

Fig. 4. The goal point for the harmonic potential field obtained by extrapolating the motion of the robot prior to
entering Md .

3.3. Goal point generation
The human determines the trajectory of the robot in Ms . As discussed earlier, when the robot enters
the danger set, p(t) ∈ Md , the potential field corresponding to that obstacle is switched on for
obstacle avoidance. The location of the goal point, where the negative charge of the potential resides,
affects the trajectory of the robot in Md . In this paper, the goal point is selected based on human
intention prior to the robot entering Md . The goal point is chosen to reduce the deviation of robot
from the human intended trajectory as it leaves Mh.

The digital control system is considered to have finite memory to store the position of the robot
from the last m time steps, pk for k = 1, 2, . . . , m. Using pk and assuming the WMR rolls without
sliding (non-holonomic constraint), the goal point can be obtained by polynomial extrapolation as
shown in Fig. 4. Given the known obstacle geometry, it can be ensured that the extrapolated goal
point lies in Ms . It is to be noted that the goal point is only required to generate harmonic potential
field to avoid obstacles, and the goal point may not actually be visited since the human determines
the motion of the robot in Ms .
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Fig. 5. Sketch showing robot trajectories for different obstacle geometries.

3.4. Multiple obstacles
Given the dependence of autonomy control input in Eq. (12) on the obstacle geometry, special
consideration must be given to the case of multiple obstacles, especially when their obstacle geometry
overlaps. In the case of multiple obstacles, the potential at any point (x, y) is the result of negative
charge at the goal point and all positive charges at the obstacles. Special care must be taken in designing
qj ∀j to ensure that the field lines do not go to infinity (resulting in instability), and the field lines
do not enter the obstacles (resulting in collision). In ref. [43], a mathematical programming problem
is formulated to design qj to satisfy the above constraints. However, the additional computational
burden is unwarranted in the presented application. The developed control allocation function ks(p)
ensures that the potential field has no influence on the robot when p(t) ∈ Ms . When the robot enters
the danger set, p(t) ∈ Md , the potential field corresponding to that obstacle is switched on and
it turns off only when the robot leaves Mh or enters Md of another obstacle. Depending on the
geometry of the obstacles, we consider four cases as shown in Fig. 5. Let Mdi be the danger set and
Mhi be the hysteresis set of the obstacle i. Consider the following cases: (a) Mhi ∩ Mhj = ∅, (b)
Mhi ∩ Mhj 
= ∅ and Mhi ∩ Mdj = ∅, (c) Mhi ∩ Mdj 
= ∅, and (d) Mdi ∩ Mdj 
= ∅, for i 
= j .
Under switching potential field, it is trivial to show that in (a), (b), and (c), the robot will move away
from the obstacles. Moreover, in contrast to ref. [40], the designed controller due to inclusion of the
hysteresis set will not exhibit hunting. Special consideration is given to the case when the danger
sets of two obstacles overlap, i.e., Mdi ∩ Mdj 
= ∅. To avoid collision, when p(t) ∈ Mdi ∩ Mdj ,
the potential field of to the nearest obstacle can be used to obtain ua(t). The resultant controller will
track the robot along the equidistant line between the obstacles by following a discontinuous gradient
θ̇d (t) as shown in Fig. 5. The resulting fast switching of the controller can be avoided using various
heuristics, e.g., see ref. [40]. To summarize, the design of ks(p) in Eqs. (13)–(16) enables to treat
multiple obstacles case in a similar manner to that of the single obstacle. The potential field of the
closest obstacle is used to obtain ua(t) whenever the robot enters a danger set or sets Mdi .

4. Experimental Validation
The experiment was conducted in an indoor environment to validate the performance of the developed
adaptive execution-level shared controller. A human operator remotely operated the WMR, while the
on-board autonomous controller ensured collision avoidance. A stricter scenario is considered where
the forward linear velocity of the robot was considered to be constant. If the linear velocity can be
varied, and in particularly reduced, in the vicinity of obstacles, then the collision avoidance problem
becomes simpler, which can also be verified from Eqs. (12) and (28). Therefore, given the constant
linear velocity, the operator signals the angular velocity commands to the robot in order to steer
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Fig. 6. (a) Experimental setup showing the robot’s workspace and the circular boundary of the three obstacles,
(b) iRobot Create with on-board computer, and (c) the operator’s GUI for remote control of the robot.

it in the workspace. The obstacle avoidance controller designed in Eq. (12) also issues angular
velocity commands to avoid collision when the robot enters Md . To summarize, both the human and
the autonomy control inputs are angular velocity or steering commands to the robot. Note that the
developed controller does not require that the linear velocity of the robot be constant, and it can be
varied by an operator. As proved in Section 3.1, obstacle avoidance is guaranteed if the gain ka1 is
chosen according to Eq. (28) using the known upper bound on the time-varying linear velocity. The
experimental testbed and the results are discussed in the following sections.

4.1. Testbed
The WMR under consideration is a differential drive iRobot Create. A low-level controller tracks
the commanded linear and angular velocities by determining the required speed of each wheel. The
workspace was about 5.5 m × 5.5 m which included three circular obstacles of radius 0.37 m as
shown in Fig. 6. An OptiTrack motion capture system was used to obtain the time-varying position
and orientation of the robot with respect to a known inertial frame. The robot carried a computer
running Robotic Operating System (ROS) that received measurements from the OptiTrack system
over a wireless network. The ground station included a computer with a user interface developed in
MATLAB to display the position of the robot in the environment to enable human to navigate the
robot.

The human could steer the robot by pressing the left and the right arrow keys to turn the
robot in counter-clockwise and clockwise direction, respectively, to navigate the robot through the
environment according to his or her objective. The ground station also used ROS to encode the human
input to send it to the robot over the ROS network. The longer the human held down the button,
the control input grew linearly in magnitude until it reached a designed saturation level. Further, the
computer on-board the robot determined the autonomy control input ua(t) and the control allocation
weight ks(p) based on its own position and orientation with respect to the obstacles in the map and
the human input. Finally, the human input uh(t) was combined with ua(t) according to Eq. (2) to
drive the robot. The constant linear velocity of the robot was measured to be about 0.3 m/s. The
human input, the autonomy input, and the OptiTrack-measured robot position was recorded and time
stamped so that the results can be analyzed and presented.

4.2. Results
Three trials were conducted to demonstrate the performance of the presented controller. The plots
in Figs. 7–9 are obtained using the data recorded in actual trials. The obstacles are shown in solid
yellow circles, and the dotted green lines around the obstacles represent the boundaries of the danger
and the hysteresis sets. The trajectory traversed by the robot is shown in blue, where the hollow and
the solid blue circles are the start- and end-points, respectively. The black arrows superimposed on
the robot’s trajectory in Figs. 7–9 indicate that the human exerted a turn velocity uh(t) to the robot
at the corresponding position on its trajectory. Along the direction of the motion, the left and the
right arrows indicate counter-clockwise and clockwise turns, respectively. As discussed earlier, the
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Fig. 7. Trial 1: The time-varying robot trajectory (blue line), obstacles (yellow), and the direction and the relative
magnitude of the human’s steering control input (black arrows).
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Fig. 8. Trial 2: The time-varying robot trajectory (blue line), obstacles (yellow), and the direction and the relative
magnitude of the human’s steering control input (black arrows).
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Fig. 9. Trial 3: The time-varying robot trajectory (blue line), obstacles (yellow), and the direction and the relative
magnitude of the human’s steering control input (black arrows).
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Fig. 10. Trials 1 (top), 2 (left bottom), 3 (right bottom): The time-varying robot trajectory (blue line), obstacles
(yellow), and the goal points (cyan boxes) generated as the robot enters the danger set of the obstacles at points
marked in purple boxes.

human control input was designed to grow in magnitude if the human held the key pressed for longer
duration. Therefore, the length of the arrow is chosen proportional to the magnitude of uh(t) to clearly
demonstrate when the human persistently exerted control on the robot, i.e., shorter arrows corresponds
to small angular velocities and vice versa. Fig. 10 demonstrates the procedure for generating the goal
points as outlined in Section 3.3. The instances when the robot enters the danger set Md are shown
in purple boxes, while the goal points are shown in cyan boxes. The boxes are connected by dotted
black lines to show their correspondence. The numbers in the boxes merely identify a goal point from
the rest (i.e., goal point identification number), and it is included for bookkeeping purposes only.

Figs. 7–9 show that occasionally the human input causes the robot to get close to the obstacle
which may potentially result in collision. However, it can be seen that the autonomous controller
avoids collision by tracking the desired potential gradient, ensuring robustness with respect to adverse
human inputs, and varying the control allocation function by sliding the control authority to autonomy.
Consider Figs. 7 and 10 corresponding to trial 1. As the robot enters Md of obstacle 3, the first goal
point is generated, and ua(t) causes the robot to move away from the obstacle. However, due to the
persistent counter-clockwise turn commanded by the human, the robot turns back toward the obstacle
as soon as it leaves Mh, which results in the second goal point when the robot enters Md . Once again
the autonomous controller ensures collision avoidance by steering the robot away from the obstacle
thus demonstrating the performance of the obstacle avoidance controller. To show the robustness
of the developed controller with respect to adversarial human inputs, consider Figs. 8 and 10 and
refer to the part of the trajectory after goal point 3 is generated when the robot enters Md of
obstacle 3. The autonomous controller is steering the robot in counter-clockwise direction away from
the obstacle, while the human is commanding the robot to turn clockwise. The robust element in
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Table I. Minimum distance Rm for a single obstacle with β ∈ {.01, 0.1, 1.0} and γ = 1.

Initial condition β = 0.01 β = 0.1 β = 1.0

Z1 0.3756 0.5577 0.7281
Z2 0.5073 0.6216 0.7877
Z3 0.5998 0.6935 0.8202

ua(t) nullifies the effect of the adverse human inputs to guarantee obstacle avoidance. Similarly,
the robustness of the developed controller can be observed in Fig. 9 when the robot enters Md of
obstacles 1 and 3. In Fig. 9, another interesting observation to be made is when the robot enters Md

of obstacle 1 (corresponding to goal point 2 in Fig. 10). The robot travels close to the singular line
and does not steer away until it gets very close to the obstacle due to the structure of the gradient
lines close to the unstable equilibrium point as shown in Fig. 3.

In the subsequent results, the performance of the controller was analyzed by changing the design
parameters β and γ , and the control gains ka1 and ka2. The trajectory of the robot was recorded by
varying the parameters and control gains. In addition, the minimum distance Rm ∈ R

+ from the robot
to the center of the obstacle is obtained for the entire length of the trajectory. The minimum distance
is defined as

Rm � min
(x,y)

(
(x − x1)2 + (y − y1)2

)1/2
(29)

where (x1, y1) is the center of the obstacle, and (x(t), y(t)) is the recorded trajectory of the robot.
Fig. 11 shows the trajectory of the robot for various cases of β ∈ {0.01, 0.1, 1} and γ = 1,

Uh = 2, and ka2 = 1. Three different initial conditions (x(0), y(0), θ(0)) for the robot were chosen,
which are denoted byZ1 ∈ (0.785, 0.925, −0.2569),Z2 ∈ (0.735, 0.712, −0.2569), andZ3 ∈ (0.689,

0.502, −0.2569). The robot trajectories for different values of β for the initial conditions in set Z1

are shown in Figs. 11(a)–(c), similarly trajectories for the initial conditions in set Z2 are shown in
Figs. 11(d)–(f), and trajectories for the initial condition in set Z3 are shown in Figs. 11(g)–(i). The
initial condition Z1 is on the singular line with the robot pointing toward the center of the obstacle,
while the initial conditions in Z2 and Z3 are parallel to the singular line.

The minimum distance Rm of the robot from the obstacle is given in Table I, where the row and
column correspond to the row and column of Fig. 11. From Table I, it is clear that increasing β

also increases Rm for all initial conditions. Moreover, the farther the initial conditions are from the
singularity line, i.e., compare Figs. 11(d)–(f) to 11(g)–(i), the larger Rm becomes. This is expected
since the control effort required to avoid obstacles is the largest when the robot is on the singular line
and it reduces as the robot moves away from the singular line, which is due to the varying curvature
of the gradient lines as shown in Fig. 3. Further, it can be seen from Table I that with increase in β

the minimum distance Rm increases. This is because large β allows ks1(t) in Eq. (15) to approach
1 in less time, and when ks1(t) = 1 the entire control effort is directed toward obstacle avoidance.
Hence, with increase in β, the convergence time t reduces, and hence Rm increases. This is evident
from the error plot in Fig. 12, corresponding to the initial conditions in set Z3, where it is shown that
θ̃ (t) converges faster with larger value of β. Figs. 12(a)–(b) show that, although obstacle avoidance
was achieved, the radius of the danger zone was not large enough for θ̃ (t) to decrease to zero with
β ∈ {.01, .1}. When β was increased to 1, the error θ̃ (t) converged to zero within the danger zone in
about 6 s as shown in Fig. 12(c).

In the next experiment, γ is varied while maintaining β constant. Fig. 13 shows the trajectory of
the robot for γ ∈ {.01, .1} and β = 1. The initial condition of the robot is in the set Z2. Together
with Figs. 13 and 11(f), for β = 1 and γ ∈ {.01, .1, 1}, the minimum distance is obtained as Rm =
{0.7871m, 0.7883m, 0.7877m}. This shows that γ has little impact on the performance of the system.

To study the effect of control gain ka1 on the performance of the controller, ka1 is varied from
0.3 to 1.7. Additionally, adversarial human input is exerted persistently and intentionally causing the
robot to collide with the obstacle. When the robot enters Md from the left side of the workspace (see
Fig. 14), the human holds down the left arrow key thus persistently commanding the robot to turn
counter-clockwise to force the robot to collide with the obstacle. Fig. 14 shows the robot trajectories
for the different values of ka1 and β = 1, γ = 1, ka2 = 1. The minimum distance Rm is shown in
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Fig. 11. Experimental results for a single obstacle with β ∈ {.01, 0.1, 1.0} and γ = 1. (a) Z1, β = 0.01. (b)
Z1, β = 0.1. (c) Z1, β = 1. (d) Z2, β = 0.01. (e) Z2, β = 0.1. (f) Z2, β = 1.0. (g) Z3, β = 0.01. (h)
Z3, β = 0.1. (i) Z3, β = 1.0.
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Fig. 12. Experimental results showing the error θ̃ (t) for the duration that the robot is within the danger zone
p ∈ Md . (a) Z3, β = 0.01. (b) Z3, β = 0.1. (c) Z3, β = 1.0.
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Table II. Minimum distance Rm for a single obstacle where ka1 is varied while γ = 1, β = 1, ka2 = 1.

ka1 = 0.3 ka1 = 0.5 ka1 = 0.7 ka1 = 0.9 ka1 = 1.1 ka1 = 1.3 ka1 = 1.5 ka1 = 1.7

Rm 0.0685 0.2529 0.4509 0.5693 0.6091 0.5910 0.6896 0.6460

Table III. Minimum distance Rm for a single obstacle where ka2 is varied while γ = 1, β = 1, ka1 = 0.7.

ka2 = 1.0 ka2 = 1.2 ka2 = 1.4 ka2 = 1.6 ka2 = 1.8 ka2 = 2.

Rm 0.4683 0.4635 0.4789 0.4682 0.4714 0.4688
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Fig. 13. Experimental results showing the robot trajectories for γ ∈ {0.01, 0.1} and β = 1.0. (a) Z2, γ = 0.01.
(b) Z2, γ = 0.1.

Table II for different values of ka1. From Figs. 14(a)–(b), it is clear that insufficient gain ka1 causes
the robot to collide with the obstacle. In Figs. 14(c)–(e), where ka1 goes from 0.7 to 1.1, there are
noticeable improvements in Rm. For ka1 ranging from 1.3 to 1.7 as shown in Figs. 14(f)–(h), there is
little improvement in the minimum distance.

Due to persistent command, the human input saturates at uh(t) = Uh. The autonomy control input,
on the other hand, attempts to track the desired potential gradient by commanding the robot to turn
clockwise. Mathematically, sign(uh) = −sign(ua). Depending on the values of ka2, β, and Uh, and
from Eq. (2), either the term (1 − ks)Uh dominates ksua(t) or vice versa. If (1 − ks)Uh dominates
ksua(t), then the resulting angular velocity w(t) will drive the robot close to the obstacle, which
increases the control gain ks (see Eq. (15)) and, as a result, (1 − ks)Uh decreases. At a distance d∗

j

from the obstacle, the value of the gain ks is such that (1 − ks)Uh = ksua(t) (i.e., the human and the
autonomy control efforts cancel each other). However, any deviation from d∗

j will cause either of the
control inputs to dominate, which will change ks forcing the robot to maintain distance d∗

j from the
obstacle. In a crude sense, the trajectory at d∗

j can be considered as an equilibrium when persistent
human input is applied. It is trivial to show that identical results are obtained if ksua(t) dominates
(1 − ks)Uh. Further, the autonomy control input required to track the desired potential gradient varies
depending on the position of the robot in the field. For small values of ka1, the robot cannot track the
desired potential gradient when it is in the vicinity of the singular line. Therefore, the robot traverses
into the obstacle until the gain ks becomes sufficiently large to dominate the human control input. As
a result, for small ka1, the robot exhibits irregular trajectories shown in Figs. 14(a)–(c). In summary,
the control gain ka1 should be chosen sufficiently large for the robot to track the potential gradient
almost everywhere. If the human persistently exerts adversarial control, then the robot will guarantee
obstacle avoidance and follow a circular trajectory in Md .

The following results demonstrate the performance of the controller when the control gain ka2

is varied. It is to be noted that the gain ka2 corresponds to the feed-forward term in Eq. (12) that
ensures robustness against adversarial human inputs. Fig. 15 shows the trajectories of the robot with
persistent adversarial human input similar to the previous results in Fig. 14. The parameter ka2 is
varied and γ = 1, β = 1, ka1 = 0.7. The minimum distance Rm is shown in Table III, where no
obvious performance difference is seen by varying ka2. This shows that ka2 only needs to satisfy the
inequality ka2 ≥ Uh/2 in order to nullify the human input uh to avoid collision with obstacles. The
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Fig. 14. Experimental results showing the robot trajectories when the human input is adversarial to the goal
of obstacle avoidance. The parameter ka1 is varied while γ = 1, β = 1, ka2 = 1. (a) ka1 = 0.3. (b) ka1 = 0.5.
(c) ka1 = 0.7. (d) ka1 = 0.9. (e) ka1 = 1.1. (f) ka1 = 1.3. (g) ka1 = 1.5. (h) ka1 = 1.7.

near-circular trajectories in Fig. 15 are the result of equal control effort in opposite directions exerted
by the human and the autonomy, as discussed earlier.

Finally, the performance of the controller is validated for the scenario shown in Fig. 5 when
the obstacle geometries overlap. In particular, three cases are considered—(a) the hysteresis zones
overlap Mh1 ∩ Mh2 
= ∅, (b) the hysteresis and the danger zones overlap Mh1 ∩ Md2 
= ∅, and (c)
the danger zones overlap Md1 ∩ Md2 
= ∅. Fig. 16 shows the robot trajectories for the three cases.
It can be seen that the robot trajectories are similar to the anticipated trajectories in Fig. 5 and avoid
collision with the obstacles by following a switching potential field as discussed in Section 3.4.

5. Conclusion
An execution-level shared controller is developed for a mobile robot navigating in a complex
environment with obstacles. In contrast to much existing work, the paper focuses on rigorous controller
development and stability analysis of the shared controller. The controller is shown to be robust to
adverse human actions, which can be important for safety of many assistive robotics systems. Using
Lyapunov-based stability analysis, the developed shared controller is shown to be finite-time stable.
The performance of the shared control system was analyzed through indoor experiments.

One of the avenues for future research is to include human factors, such as fatigue and cognitive
workload, into the adaptive control allocation function to improve robustness to erroneous human
inputs. Another area of future work is to integrate online obstacle detection methods into the existing
framework.
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Fig. 15. Experimental results showing the robot trajectories when the human input is adversarial to the goal of
obstacle avoidance. The parameter ka2 is varied while γ = 1, β = 1, ka1 = 0.7. (a) ka2 = 1.0. (b) ka2 = 1.2.
(c) ka2 = 1.4. (d) ka2 = 1.6. (e) ka2 = 1.8. (f) ka2 = 2.0.
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Fig. 16. Experimental results showing the robot trajectories between two obstacles. (a) Mh1 ∪ Mh2 
= ∅.
(b) Mh1 ∪ Md2 
= ∅. (c) Md1 ∪ Md2 
= ∅.
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